Skip to main content
版本:1.13.0

简介

InLong(应龙),中国神话故事里的神兽,引流入海,借喻 InLong 系统提供数据集成能力。

关于 InLong

Apache InLong(应龙)是一站式、全场景的海量数据集成框架,同时支持数据接入、数据同步和数据订阅,提供自动、安全、可靠和高性能的数据传输能力,方便业务构建基于流式的数据分析、建模和应用。 InLong 项目原名 TubeMQ ,专注于高性能、低成本的消息队列服务。为了进一步释放 TubeMQ 周边的生态能力,我们将项目升级为 InLong,专注打造一站式、全场景海量数据集成框架。 Apache InLong 依托 10 万亿级别的数据接入和处理能力,整合了数据采集、汇聚、存储、分拣数据处理全流程,拥有简单易用、灵活扩展、稳定可靠等特性。 该项目最初于 2019 年 11 月由腾讯大数据团队捐献到 Apache 孵化器,2022 年 6 月正式毕业成为 Apache 顶级项目。目前 InLong 正广泛应用于广告、支付、社交、游戏、人工智能等各个行业领域,为多领域客户提供高效化便捷化服务。

特性

  • 简单易用

    基于 SaaS 模式对外服务,用户只需要按主题发布和订阅数据即可完成数据的上报,传输和分发工作

  • 稳定可靠

    系统源于实际的线上系统,服务上十万亿级的高性能及上千亿级的高可靠数据数据流量,系统稳定可靠

  • 功能完善

    支持各种类型的数据接入方式,多种不同类型的 MQ 集成,以及基于配置规则的实时数据 ETL 和数据分拣落地,并支持以可插拔方式扩展系统能力

  • 服务集成

    支持统一的系统监控、告警,以及细粒度的数据指标呈现,对于管道的运行情况,以数据主题为核心的数据运营情况,汇总在统一的数据指标平台,并支持通过业务设置的告警信息进行异常告警提醒

  • 灵活扩展

    全链条上的各个模块基于协议以可插拔方式组成服务,业务可根据自身需要进行组件替换和功能扩展

架构

标准架构:包含 InLong Agent、Manager、MQ、Sort、Dashboard 等所有 InLong 组件,同时支持`数据接入`、`数据同步`和`数据订阅`。Apache InLong

模块

Apache InLong 服务于数据采集到落地的整个生命周期,按数据的不同阶段提供不同的处理模块,主要包括:

  • inlong-agent,数据采集服务,包括文件采集、DB 采集等。
  • inlong-dataproxy,一个基于 Flume-ng 的 Proxy 组件,支持数据发送阻塞和落盘重发,拥有将接收到的数据转发到不同 MQ(消息队列)的能力。
  • inlong-tubemq,腾讯自研的消息队列服务,专注于大数据场景下海量数据的高性能存储和传输,在海量实践和低成本方面有着良好的核心优势。
  • inlong-sort,对从不同的 MQ 消费到的数据进行 ETL 处理,然后汇聚并写入 Hive、ClickHouse、HBase、Iceberg、Hudi 等存储系统。
  • inlong-manager,提供完整的数据服务管控能力,包括元数据、任务流、权限,OpenAPI 等。
  • inlong-dashboard,用于管理数据集成任务的前端页面,简化整个 InLong 管控平台的使用。
  • inlong-audit,对 InLong 系统的 Agent、DataProxy、Sort 模块的入流量、出流量进行实时审计对账。

已支持数据节点(更新中)

TypeNameVersion
Extract NodeAuto PushNone
FileNone
Kafka2.x
MySQL5.6, 5.7, 8.0.x
MongoDB>= 3.6
MQTT>= 3.1
Oracle11,12,19
PostgreSQL9.6, 10, 11, 12
Pulsar2.8.x
Redis2.6.x
SQLServer2012, 2014, 2016, 2017, 2019
Load NodeAuto ConsumptionNone
Hive1.x, 2.x, 3.x
Iceberg0.12.x
Hudi0.12.x
ClickHouse20.7+
Kafka2.x
HBase2.2.x
PostgreSQL9.6, 10, 11, 12
Oracle11, 12, 19
MySQL5.6, 5.7, 8.0.x
TDSQL-PostgreSQL10.17
Greenplum4.x, 5.x, 6.x
Elasticsearch6.x, 7.x
SQLServer2012, 2014, 2016, 2017, 2019
Doris>= 0.13
StarRocks>= 2.0
HDFS2.x, 3.x